Interpolation with cubic spirals

نویسندگان

  • Donna A. Dietz
  • Bruce R. Piper
چکیده

Numerical techniques are used to study parametric Bézier cubics of monotonic curvature, and tools are presented for design applications. Values are computed to aid in the selection of control points for building interpolatory cubic spirals, and a table is developed which helps in adjusting the endpoint curvatures.  2003 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spiral spline interpolation to a planar spiral

We derive regions for T-cubic and arc/T-cubic spirals to two-point Hermite interpolation in terms of unit tangent vectors with help of Mathematica. The use of spirals gives the designer an excellent and speedy control over the shape of curve that is produced because there are no internal curvature maxima, curvature minima, inflection points, loops and cusps in a spiral segment.

متن کامل

Rational cubic spirals

We consider the problem of finding parametric rational Bézier cubic spirals (planar curves of monotonic curvature) that interpolate end conditions consisting of positions, tangents and curvatures. Rational cubics give more design flexibility than polynomial cubics for creating spirals, making them suitable for many applications. The problem is formulated to enable the numerical robustness and e...

متن کامل

Interactive Shape Preserving Interpolation by T-conic Spiral Spline

A T-conic (rational cubic with a quadratic denominator) spiral spline, with shape control parameters, will be discussed with the view to its application in Computer Graphics. An efficient scheme is presented which constructs a curve interpolating a set of given data points and allows subsequent interactive alteration of the shape of the curve by changing the shape control and shape preserving p...

متن کامل

An Optimal G^2-Hermite Interpolation by Rational Cubic Bézier Curves

In this paper, we study a geometric G^2 Hermite interpolation by planar rational cubic Bézier curves. Two data points, two tangent vectors and two signed curvatures interpolated per each rational segment. We give the necessary and the sufficient intrinsic geometric conditions for two C^2 parametric curves to be connected with G2 continuity. Locally, the free parameters w...

متن کامل

Piecewise cubic interpolation of fuzzy data based on B-spline basis functions

In this paper fuzzy piecewise cubic interpolation is constructed for fuzzy data based on B-spline basis functions. We add two new additional conditions which guarantee uniqueness of fuzzy B-spline interpolation.Other conditions are imposed on the interpolation data to guarantee that the interpolation function to be a well-defined fuzzy function. Finally some examples are given to illustrate the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer Aided Geometric Design

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2004